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Abstract - In an effort to formulate the high frequency coupling
between antennas located on airframes composed of multilayer
imperfectly conducting materials, a general model was sought
which would embody the electromagnetic properties of the layers
and would apply over a broader range of separations of the
antennas. Such a model is described here. This work is a
generalization of the work of pearson concernin9  the hi9h
frequency asymptotic representation of the fields of elemental
sources diffracted by a multi layer cylinder. In that work, the
source and field points were located off the cylinder surface and
they were sufficiently separated to permit the effective use of
the residue series representation of the spectral integrals
involved. Here the source and field points are located on the
cylinder surface and are permitted to be sufficiently close as to
render the residue series poorly convergent. To obtain a more
effective represent.ation in this situation, the cylinder is
modeled bv an anisotropic impedance cylinder and the resulting
spectral integrals are ‘evaluated
to multiple applications of
literature in connection with
sources in this context.

by reduction to forms
techniques described
treatme;t

I. Introductic)n

As part of a study of the coupling between

such as the configuratic)n  shown in Figure 1

of axially

antennas on

amenable
in the
uniform

aircraft

f an analytical model

was constructed which consisted of a multilayer imperfectly

conducting cylinder with an axially directed elemental source of

either electric or magnetic type located on its outermost surface

as in Figure 2. The fields of this source evaluated on the

outermost surface of the cylinder are indicative of the

attenuation of fields propagating on the surface and can thus
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provide insight regarding the coupling to be expected between

antennas located on such a cylindrical substrate. At 10W
frequencies, of course, an eigenfunctjon series representation

can be used to evaluate the necessary vector potentials. At high

frequencies, however, such a series becomes unwieldy and a more

manageable representation is sought. This usually takes the form

of a residue series obtained by Watson transformation of the
eigenfunction series. A general treatment of the problem using

this approach was presented by Pearson [1986] [1987]. Pearson’s

treatment, however, required that the sources and field points be

located off the surface and that they be separated sufficiently
that the residue series converged reasonably rapidly.

1’
Once

having obtained the residue series fc)r the vector potentials,

Pearson carried out a stationary phase integration on the axial

wavenumber to obtain a solution as a sum of rays which connect

the source and field points and which follow helical paths on the

surface.

A similar treatment which was limited to perfectly conducting

cylinders, but permitted on-surface source and field points, was

carried out by Chang, et. ?il. [1976]. There, however, the

stationary phase axial wavenumber integration was carried out

first, resulting in an expression for the field components

(rather than potentials) in” terms of integrals over azimuthal

wavenumber  which were then treated asymptotically. For large

separation of source and field points, again the residue series

representation was used. However, Chang et.al. extended their

treatment to small separation by expanding parts of the

integrands in inverse powers of the azimuthal wavenumber and

recognizing the terms as known Laplace transforms. This led to a

series representation in powers of the separation or Fock

parameter. It is noted for future reference that this series

representation

the perfectly

is most. useful for low impedance surfaces such as

conducting one treated by Chang, et.al. If the
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surface impedance is not small, the series converges very slowly

unless the Fock parameter is extremely small; i.e. , the series is

useful only for very small separation between source and field

points. It should be noted further, however, that, while the

power series applies for very small Fock parameter, it actually

represents, not the true spectral integral for the field

potentials but , rather, an approximation thereto. The

approximation arises when one substitutes the Fock type Airy

function approximation for the Hankel functions in the integrand.

Since this approximation applies near the turning point of the

Hankel functions, the resulting integral is not valid for

arbitrarily small Fock pararnete$: This point will be discussed

in more detail later in this exposition.

More recently, the complementary residue series / power series

approach of Chang, et.al. was applied to the two~’dimensional

problem of azimuthal rays on an impedance cylinder. [Paknys and

Wang, 1987] The example calculations presented assume that the

impedance parameter, q, has magnitude less than 1.0 and it is

stated that when the magnitude of q is less than 1.5, the power

series is useful for I?ock parameters less than 0.6. Were the

magnitude of q larger, the range of Fock parameters over which

the power series is applicable would be considerably reduced.

Thus , for high impedance surfaces, there appears a gap between

the small Fock parameter range where the power series is useful

and the large Fock parameter range where the residue series is

useful. This intermediate range was treated many years ago by

Wait [1956] and 13remmer [1958] in connection with Propagation
over the surface of the earth. They were able to obtain a small

curvature expansion which covered this intermediate range of Fock

parameter. The first term of this expansion is mentioned by

Paknys and Wang [1987] in their discussion of the planar limit.

In the context of the cylinder problem treated here, the

formulation of Wait and Bremmer applies only to azimuthal rays.
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In this work their treatment is extencled to cover the case of

non-azimuthal rays (excluding only the case of purelY axial

propagation) .

II. Formulation

Noting that an anisotropic surface impedance cylinder can exactly

model a multilayer cylinder at a fixed azimuthal mode order

[D.J.Hoppe  and Y. Rahmat-Samii, 1.992], we adopt the model shown

in Figure 3 and select the surface impedance to match the

multilayer cylinder at a mode order equal to Pla where 61 is the

radial wavenumber in the exterior medium and a is the outer

radius of the cylinder. This value i.s chosen because, in the

high frequency asymptotic limit treated here, most of the

contribution to the spectral integrals comes from the region of

the complex order plane near /31a. In terms of the formulation

presented by Pearsc)n [1986], the axial magnetic and electric

vector potentials for the fields on the cylinder surface due to

elemental axial electric and magnetic current sources on the

surface may be expressed as the spectral integral,

[1J e-ja(z-z’) e-j~l$-~n’l dv dax M
(1)

r—=
where @ ‘ = @’ + 2nn, (31 := k: - a2, and primed and unprimed

n

coordinates denote the source and field points, respectively.

The boundary conditic)n on the “surfac:e of the cylinder may be
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written in the form,

L-1 L

R~ is a two by two reflection

terms of the elements of the Z

{[

AZ

1[

%1 1
RBll= — - T?lL1l .— i——

zz~ ml zz~ 1

(2)

matrix in which may be written in

matrix as,
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au Zzz

H

au %@ 1}Q12.—.. . -.— — + –— —-
zz~ zz~ A

af3~ af3~
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1}
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where,
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Az

H

%1 1

H

au Zzz

– 1 [

au ‘w
A — - Tl%l -~– - ‘ - + -.——-- - +—

1}
(4)=

Zz$ zz~ Zzl$ zz@ap~ ap~

5



(5)

(l)’
jkj %7 (Pja)

H (i) (kla)
‘lJ  = ——. .—

(1) Qij(%a) = :—–_.__,
‘J HV (~ja) H~(j) (kla)

(6)

and medium 1 is the medium exterior to the impedance cylinder.

Note that this is a spectral integration over both the axial wave

number, o!, and the azimuthal mode number, v. The summation on

index n is the sum over multiple ray circumnavigations of the

cylinder. This integral may be expanded and simplified into the

forms ,

(7b)

Since the surface rays decay in amplitude exponentially for

sufficiently large separation of source and field points, the n=O

term of the series will. dominate. Selecting only the n=O term
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and performing the integration on a by the method of stationary
phase, results in,

(8a)

where

D =
z-z’ 1—— ..—.

a((j-~’ )
(Z-Z’)2 +- a2(@-@’)2 (9)arctan

4 klm 
1 ej~[/4
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n@~a 2

1
-.
A

1
-—
A

1

Vll (c)

VI’(E)

V21 (C)

V22(E)

4 kl m  1  ~j~/4
=— —

7r(3~a 2

Cxv Z z z

-— 1--. — (1OC)-—
A

1
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-m

<m—
Ti J

A

1
L21--_z_

mizzo
(lOd)ejrc/4

-m

(11)m = (P1a/2)1’3, v = mz+pla, and&’ =ml@ -@’l.
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The remainder of this paper deals with the asymptotic evaluation

of the integrals, vi, for large ~la over various ranges of the

Fock parameter, ~.

III. Asymptotic Evaluation of the Integrals.

A. Review of

If the source

that is z=z’,

also zero and

the Azimuthal Case.

and field points are at the same axial coordinate,

then 0=0 and it follows that a, 222, and Z#~ are

(31=kl . In such a circumstance V12=0, V21=0, and,

(12a)

(12b)

representing the TM and TE cases, respectively. Except for the
2

factor — these are exactly the forms treated by Paknys and
rcjm’

Wang [1987] and by Wait [1956] and Bremmer [1958]. To see this,

we note that near v=:kla,

H~2)’ (kla) w; (z)
jml& = -m ———-–– = –-

H(2)~ (kla)
W2(T)

(13)
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where wz(~) = ~ [Bi(z) - j Ai (z)] and Ai and Bi are Airy

functions. Recalling our earlier discussion, note that, because

it applies only when z~[2v/(kla)]l’3 and thus is not valid for

arbitrarily large z, it is this Airy function approximation of

%1 which invalidates the applicability of the resulting

representation for arbitrarily small ~. [Bowman, et.al., 1987,

P“ 57] Now, following Paknys and Wang [1987], we define

q= -jmC (14)

where,

.- Az
c = --—– in the TM case and,

%zz@

VI
C == ——-- in the TE case.

Zzq!l

Thus , we find that,

(15a)

(15b)

[J?“ W2(T) e-jc~jn/4 _ _
vii(c) =+;e --—-—. —dz= ;;m v(~,q) (16)

n ~(z) - W2(Z)
-m

where ii=ll in the TM case and 22 in the TE case and v(~,q) is

the integral treated by Paknys and Wang [1987], Wait [1956], and

Bremmer [1958].

For large values of ~, v(~,q) is conveniently represented as a

series of residues at the poles corresponding to zeros of the

denominator of the integrand; that. is, at z = z. where,
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(17)

For small values of ~, this residue series is poorly convergent

and an alternative treatment. is needed. One approach is to

expand the ratio R defined below in inverse powers of ~ as

follows.

R .2- J7 - ~ - =----** -.**
W2 4X 32T5’2 64T4

(18)

Substituting this in the integrand and expanding all but the

exponential in inverse powers of z, followed by application of

Watson’s lemma, results in an asymptotic representation of v(c,q)

for small ~. As mentioned earlier, while useful for small values

of q, the range of utility of this representation becomes smaller

as q increases. Therefore, for large q still another treatment

is needed.

The required treatment was provided by Wait [1956] and by Bremmer

[1958] wherein they use the above large T expansion of R to show
that

1, -1

{

1 1
- ____ 63 +

R-q = < l+j~ 2s(l-tjE)2

[

1 5j
—.—— .— - —-——-—

1
6(’ + 0(69) (19)

4s2(l+j&)3 8s5’2(l+j~)2

where s = -z/ q2 so that ~ = j~/q and 6 = (-2)-i’3q-l. The

terms of this expansion may now be recognized as known Laplace

transforms expressible in terms of the complementary error

function. That is,
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v(~, q) - F(P) + :- [1 - j(np)l’2 - (1+-2 P) F(P)]
4 qs

5p2
+ +[1- j(rrp)i’2 (l-p) - 2p + —6- + (P2/2 - l) F(P) ]

4 q6

+ O(q-g)

where,

F(p) = 1 - j(np)i’2 e-p erfc(jpl’2),

(20)

( 2 1 )

and p = j~q2 as giVen by Hill and Wait [1980] . This has been

termed the “small curvature approximation” by virtue of the

powers of 63 which, being inversely proportional to #31a, is a

measure of the curvature

one must exercise care

strictly speaking, it.

Re(jpl’2)~0. Otherwise,

of the surface. It is noted here that

in the use of this formula because,

represents the integral only if

one must change the algebraic sign of
plzz in this formula. This circumstance never arose in the work

of Hill and Wait because of physical realizability constraints on

the surface impedance. It will, however, arise in subsequent

analysis presented here. Finally, note that this expansion is

not very useful for

powers of q appearing

power series approach

of choice.

small q owing

in the terms.

discussed above

to the increasing inverse

Therefore, for small q the

remains the representation

B. Treatment of the Non-azimuthal Case.

Returning to equations (lOa)-(lOd) , we now allow the angle, e, to

take on any value except 90 degrees corresponding to axial

propagation because at 90 degrees the stationary phase

11



.

integration which led to these expressions becomes

Excluding that case, we note that the denominator

integrands of equations (10) are of the form,

A- (K + c~)(!R + c~) + (z + C3)(T +“ C4)

invalid.

of the

(22)

where the C’s are independent of z. Now, reversing the expansion

(18) to obtain,

-c- !p+L+ .2 - - d - . o .
2% 8%4 32~7

retaining, say, two terms, and substituting

the integrands of equations (10), one finds

degree polynomial which can be factored into

!k2A - % (~ -

Had more terms

(23)

this expansion into

that R2A is a sixth

the form,

fal)(~ -  qz)(~ -  %)(R - qa)(~ - qs)(~ - q~) (24)

of (23) been retained, the degree of (24) would

have been correspondingly higher. For example, retaining three
terms leads to a twelfth degree polynomial. Specializing to vii;

i.e., (lOa) , for the moment, the corresponding numerator
expression is,

!k2(D1R + D2) e-jtz

where here the D’s are independent of z.

numerator is,

(25)

In the case of V12, the

(26)

-1.-.
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Thus , it becomes clear that, by partial fraction expansion, the

integrands of (10) may be expressed in the form,

(27)

The six integrals in (27) are now of the fc~rm (16) and can

therefore be treated asymptotically in the same manner. Thus ,

treatment of the case of general e has been reduced to repeated

application of the methods used in the azimuthal case, G=O. Note

that in carrying out this prescription,” if only two terms are

retained in (23) , one is justified in retaining only, two terms in

(20) resulting in what will be termed a “two term small curvature

approximation.” If, however, three terms are retained in (23),

one is then justified in including three terms in (20) leading to

a “three term small curvature approximation.”

It is noted in passing that one need not necessarily approximate

the numerator (26) with the series (23) . An alternative

procedure would be tcj leave the numerator in the form,

and produce a partial fraction expansion leading to,

( 2 8 )

(29)

Then, the A. terms can be approximated as in the azimuthal case

while the B. terms can be approximated by differentiating the

results for the An terms with respect tc, -j&. This, in fact, is

the method used in the examples to follow.
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Iv. Illustrative Numerical Examples.

To illustrate the ranges of applicability of the various
representations described above, two example cylindrical
geometries were chosen. Each is a circular cylinder with a one
tenth free space wavelength thick dielectric coating. The
dielectric has a complex relative permittivity of 6.65-j3.00 and

the permeability of free space. The electrical outer radius,
kla, of the coated cylinder is 12 in one case and 500 in the

other where kl is the wavenumber of the exterior medium; i.e.,
free space. These two radii demonstrate the representations both

in the large radius regime where they are most accurate and for a

small radius where their accuracy deteriorates somewhat due
primarily to the inaccuracy of the Fock type Airy function
approximation of the Hankel functions. These cylinders were then
approximated by impedance cylinders of the same outer radii where

the anisotropic surface impedances “were determined by matching
the modal reflection coefficients at mode order v = ~la. ( T h i s ,
of course, means that the impedances are dependent on the angle
of ray propagation on the surface.)

We begin by reproducing the results for the azimuthal case to

validate the computations. Consider the magnitude and phase of
the Fock integrals, vi,, for the larger cylinder in the azimuthal
case. Figure 4, shows both the four term residue series result

and that of the three term small curvature approximation of Wait

and Bremmer for the TM polarization. The poles and residues were
computed from the unapproximated integrands for the impedance
cylinder while the small curvature approximation, of course,
involved the approximation of the Hankel function by the Fock

type Airy functions. This will be the case unless otherwise
noted. (Note that the label “90 degree path” refers to the
complement of the angle e. This convention i.s used throughout
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the set of examples presented here. ) A smooth

one approximation to the other may be observed in

~=0.6. Similar behavior is shown in Figure

transition from

the vicinity of

5 for the TE

polarization. Figure 6 compares the small curvature

approximation of Figure 5 with the power series expansion for

small ~. Both are based on the integrand with Hankel functions

approximated with Fock type Airy functions. Note that, because

of the large magnitude of q (i.e., nearly 6) , the power series

fails for ~ greater than about 0.CJ3 whereas for q on the order of

unity, Paknys and Wang showed good results up to ~=0.6. Thus, in

the subsequent examples, the power series is used for q’s of

magnitude less than or equal. to unity and the small curvature

approximation is used for q’s of magnitude greater than unity.

Moving now to a 45 clegree ray path, Figures 7a, 7b, and 7C

illustrate the results for the three Fock integrals, VIII V121

and V22. (Recall that V21 = V12.) Here eight residue terms are

used to obtain the same order of approximation as with four terms

in the azimuthal case because here both polarizations are

involved. Corresponding results using the two term small

curvature approximat.ion are shown in Figures 8a, 8b, and 8c. The

deterioration of the approximation is quite evident. In fact, it

would be difficult to cletermine  from the two term approximation

the proper value of the Fock parameter at which to make the

transition between the two

approximation in Figure 7

transition is in the vicinity

To explore the low frequency

approximations. The three term

makes it clear that the proper

of ~=0.65.

limitations of the high frequency

asymptotic approximations, the above computations were repeated

for the small cylinder; i.e., for k1a=12. l’he results for the

two term small curvature approximation are shown in Figures 9a,

9b, and 9C while the three term results are shown in Figures 10a,

10b, and 10c. While the three term approximation provides some
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improvement, in neither set of curves is there a clearly defined

smooth transition between the small and large Fock parameter

representations, particularly in the case of the magnitude. The

addition of more terms extends the residue series validity to

lower values of Fock parameter as shown in Figures ha, llb, and

llC. Nevertheless, the transition to the small curvature

approximation is still not very clearly defined. Recall now that

that the residue series are derived from the exact integrands.

If, instead, one uses the poles and resj.dues of the integrands in

which the Hankel functions have been approximated by Fock type

Airy functions~ that is, the integrands used in the small

curvature approximation, one finds a much better defined

transition as shown in Figures 12a, 1.2b, and 12c. From this one

may conclude that the deterioration observed as the electrical

size of the cylinder decreases is not primarily due to

deterioration in either the residue series or the small curvature

approximation. Rather, it is prj.marily  due to deterioration of

the approximation of the Hankel functions by Fock type Airy

functions as in (13). One might try to improve the low frequency

validity of this treatment by addj ng more terms to this

asymptotic approximation. Such terms may be obtained from the

expansion g>ven by Bowman, Senior, ancl Uslenghi [1987]. While

this is isydeemed beyoncl the scope of the present treatment, the

next order terms of the necessary approximation (proportional to
m-z) are given below for reference.

H~2)’ (kla) 1
imlk = -m –= R+ —---- (4T+-C2)R + :.– (6+4Z-T3)c,.

H~2)(kla)

Here again T is to

rigorously guaranteed

60m 2 - - 6 0 m2

be replaced by (23). While it is not

that addition of these terms will improve

‘7

the accuracy of the approximation, this expression may be used to

estimate the impact of truncation at one term in a given

situation. For example, for the case cjf purely azimuthal rays on
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the cylinder of ka==500 in Figures 4,5, and 6, the first and

second terms of this expansion are roughly equal in magnitude for

E=o.075 indicating that, for Fock parameter values below this?

the first term of the approximation is probably inadequate.

Finally, it is noted that, regardless of how many terms of this

approximation are retained, the resulting integrands will not be

valid for arbitrarily large z. Therefore, the asymptotic

approximation of the integrals will not extend to arbitrarily

small ~. To extend the approximation to arbitrarily small ~, one

should expand the exact ,integrands in inverse powers of z in

analogy with the treatment of Paknys and Wang. (Recall that they

expanded the approximate integrand.) This, too, is deemed beyond

the scope of the present treatment.

Studies similar to the above have been carried out for ray paths

at angles of 30 degrees and 60 degrees with results very similar

in character to those presented here. While it is recognized

that these approximations will not. be valid for purely axial ray

paths and will deteriorate in accuracy near axial propagation,

these studies indicate that the approximation techniques

presented are valid and useful for all ether angles.

v. Concluding Summary.

In this work the small curvature expansion of Wait and Bremmer

has been generalized to the case of non-azimuthal rays. This

provides a high frec~ency asymptotic approximation of the

coupling between antennas located on an impedance cylinder when
their separation is too small for effective use of the usual

residue series. The result is applicable to the problem of

estimating the coupl..ing between antennas mounted on non-perfectly

conducting aircraft skins. Example calculations are presented

for both the azimuthal ray case (for validation purposes) and the
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general case (excluding axial propagation). These examples

demonstrate that the approximation complements the residue series

and power series approximations in the intermediate range of Fock

parameter.
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Figure 1.

airframe.

Figure 2.

Figure 3.

Figure 4.

TM case.

Figure 5.

TE case.

Figure 6.

Figure Captions

Ray paths for coupling betwe(m antennas on an

Multilayer cylinder model of aircraft skin.

Impedance cylinder model.

Asymptotic

Asymptotic

Comparison

representations for azimuthal rays in the

representations for azimuthal rays in the

of small curvature and power series

representations for azimuthal rays in the TE case.

Figure 7a. Asymptotic representations for helical ray path in

TM-TM coupling; three term small curvature approximation.

Figure 7b. Asymptotic representations for helical ray path in

TM-TE coupling three term small curvature approximation.

Figure 7c. Asymptotic representations for helical ray path in

TE-TE coupling three term small curvature approximation.

Figure 8a. Asymptotic representations for helical ray path in

TM-TM coupling; two term small curvature approximation=

Figure 8b. Asymptotic representations for helical ray path in

TM-TE coupling two term small curvature approximation.
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Figure 8c. Asymptotic representations for helical ray path in

TE-TE coupling two term small curvature approximation.

Figure 9a. Asymptotic representations for helical ray path in

TM-TM coupling on a small cylinder using a two term small

curvature approximation.

Figure 9b. Asymptotic representations for helical ray path in

TM-TE coupling on a small cylinder using a two term small

curvature approximation.

Figure 9c. Asymptotic representations for helical ray path in

TE-TE coupling on a small cylinder using a two term small

curvature approximation.

Figure lOa. Asymptotic representations for helical ray path

TM-TM coupling on a small cylinder using a three. term small

curvature approximation.

Figure 10b. Asymptotic representations for helical ray path

TM-TE coupling on a small cylinder using a three term small

curvature approximation.

Figure 10c. Asymptotic representations for helical. ray path

TE-TE coupling on a small cylinder using a three term small

curvature approximation.

Figure ha. Asymptotic representations for helical ray path

in

in

in

in

TM-TM coupling on a small cylinder using a sixteen term residue

series.

Figure llb. Asymptotic representations for helical ray path in

TM-TE coupling on a small cylinder using a sixteen term residue

series.
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Figure llc. Asymptotic representations for helical ray path in

TE-TE coupling on a ~mall cylinder  using a Sixteen t e r m  r e s i d u e

s e r i e s .

Figure 12a. Asymptotic representations for helical ray path in

TM-TM coupling on a small cylinder using a ten residues of the

Fock approximation.

Figure 12b. Asymptotic representations for helical ray path in

TM-TE coupling on a small cylinder using a ten residues of the

Fock approximation.

Figure 12c. Asymptotic representations for helical ray path in

TE-TE coupling on a small cylinder using a ten residues of the

Fock approximation.
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